

Robust Projection-Based Distributed Gradient-Descent Algorithm: A Fully-Distributed (Re-)design

LabEx EnergyAlps: Kick-off meeting

Mohamed Maghenem in Collaboration with T. Bazizi and P. Frasca

17/11/2025

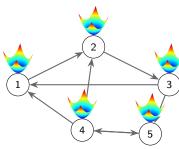
Problems Formulation

The problem $\min_{x \in \mathbb{R}^n} \left(F(x) := \sum_{i=1}^N f_i(x) \right)$ can be recast to

$$\min_{x_1,...,x_N \in \mathbb{R}^n} \sum_{i=1}^N f_i(x_i) \text{ s.t. } x_1 = ... = x_N.$$

In a distributed framework:

- ► Each $f_i : \mathbb{R}^n \to \mathbb{R}$ is assigned to a computation unit.
- Every unit seeks a minimum of f_i within the set of minimizers X_i.
- The exchange is key so that the minimum is consensual.



Challenge: Dynamically design every unite minimizer x_i s.t.

$$\lim_{t\to+\infty} x_1(t) = \dots = \lim_{t\to+\infty} x_N(t) \in \{X_1 \cap \dots \cap X_N\}.$$

Distributed/Federated Learning

Consider the optimization problem

$$\min_{\theta_1,...,\theta_N \in \mathbb{R}^n} \sum_{i=1}^N \ell_i(\theta_i, (u_1^i, y_1^i), ..., (u_{m_i}^i, y_{m_i}^i)) \text{ s.t. } \theta_1 = ... = \theta_N.$$

Here, every unit i has access to the local data-set $\{(u_k^i, y_k^i)\}_{k=1}^{m_i}$. Hence, following a distributed-optimization framework, every unit i

- ▶ minimizes its local cost function ℓ_i using $\{(u_k^i, y_k^i)\}_{k=1}^{m_i}$.
- \triangleright shares only θ_i , the local estimate of a global solution, with some other neighboring agents.

When the exchange happens through servers, we talk about federated learning. Otherwise, it is distributed learning.

Some Literature Review

Here is a candidate distributed-optimization algorithm :

$$\dot{x}_i = \underbrace{-\nabla f_i(x_i)}_{\text{Optimality}} + \gamma_i \underbrace{\sum_{j=1}^{N} a_{ij}(x_j - x_i)}_{\text{consensus}}, \quad \gamma_i > 0, \ \forall i \in \{1, 2, \dots, N\},$$

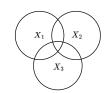
 ∇f_i is the gradient of f_i , and $a_{ij} \geq 0$ represents the communication weight between agent i and j.

- Usually the descent rate γ_i is a predefined time-varying signal [P. Lin, et al, IEEE TAC, 2025] and [Nedic, et al, IEEE TAC, 2009].
- Alternative algorithms, when the γ_i s are constant, include :
 - A PI control strategy : [Yang, et al, Automatica, 2018].
 - Second-order algorithm : [Lu and Tang, IEEE TAC, 2012].

Projection-Based Formulation

Assume that :

- ► Each local cost function f_i has a convex set X_i of minimizers.
- ▶ The intersection of X_i s is nonempty.



Hence, a solution to $\min_{x \in \mathbb{R}^n} \sum_{i=1}^N f_i(x)$ must belong to $\bigcap_{i=1}^N X_i$. Then, the following equivalence holds

$$\min_{\substack{x_1,\ldots,x_N\in\mathbb{R}^n\\\text{subject to}}}\sum_{i=1}^N f_i(x_i) \qquad \equiv \qquad \min_{\substack{x_1,\ldots,x_N\in\mathbb{R}^n\\\text{subject to}}}\frac{1}{2}\sum_{i=1}^N |x_i-\Pi_{X_i}(x_i)|^2,$$
subject to $x_1=\ldots=x_N$

 $\Pi_{X_i}(x_i) := \operatorname{argmin}_{y \in X_i} |x_i - y|$ is the projection of x_i on X_i .

Projection-Based Gradient Algorithm

The new local cost functions are $f_i(\cdot) := |\cdot|_{X_i}^2/2$, verifying

$$\nabla |x_i - \Pi_{X_i}(x_i)|^2 = 2(x_i - \Pi_{X_i}(x_i)).$$

Then, the gradient-descent algorithm

$$\dot{x}_i = -\nabla f_i(x_i) + \gamma_i \sum_{j=1}^N a_{ij}(x_j - x_i) \qquad i \in \{1, 2, ..., N\}$$

is reformulated as a projection-based gradient-descent algorithm

$$\dot{x}_i = -[x_i - \tilde{\Pi}_{X_i}(x_i)] + \gamma_i \sum_{i=1}^N a_{ij}(x_j - x_i) \qquad i \in \{1, 2, ..., N\},$$

where $\tilde{\Pi}_{X_i}(x_i)$ is a corrupted projection of x_i onto X_i .

Projection Computation

We model the corrupted projection as

$$\tilde{\Pi}_{X_i}(x_i) := \Pi_{X_i}(x_i) + \zeta_i p_i,$$

- ▶ The coefficient $\zeta_i \in (0,1)$ represents a tunable precision.
- $ightharpoonup p_i \in \mathbb{R}^n$ stands for the worst-case projection error.
- ► The algorithm in [Usmanova, et al, ICML, 21] provides such a projection $\tilde{\Pi}_{X_i}(x_i)$ within $O(\log(1/\zeta_i))$ computation steps.

As a result, we recover the class of perturbed multi-agent systems

$$\dot{x}_i = \gamma_i \sum_{i=1}^N a_{ij} (x_j - x_i) - (x_i - \Pi_{X_i}(x_i)) + \zeta_i p_i \qquad i \in \{1, ..., N\}.$$

Handling Bounded Perturbations

$$\dot{x}_i = \gamma_i \sum_{i=1}^{N} a_{ij}(x_j - x_i) - (x_i - \prod_{X_i}(x_i)) + \zeta_i p_i, \quad i \in \{1, ..., N\}.$$

- ▶ When $p_i \equiv 0$ the problem is solved in [Shi, et al, IEEE TAC, 13].
- ▶ When $p_i \not\equiv 0$, the problem is solved using predefined signals (γ_i, ζ_i) while assuming vanishing p_i [Lou, et al, IEEE TAC, 16].

Under unknown bounded perturbations, guaranteeing

$$\lim_{t\to+\infty}x_1(t)=...=\lim_{t\to+\infty}x_N(t)\in X_1\cap...\cap X_N$$

is impossible. However, we can get arbitrarily close!

Adaptive Framework

$$\dot{x}_i = \gamma_i \sum_{j=1}^N a_{ij}(x_j - x_i) - (x_i - \prod_{X_i}(x_i)) + \zeta_i p_i, \quad i \in \{1, ..., N\}.$$

We design $\{(\gamma_i, \zeta_i)\}_{i=1}^N$ as

$$\dot{\gamma}_i = h_i(x_i, \gamma_i, \{(x_j, \gamma_j)\}_{j \in \mathcal{N}_i}, \varepsilon), \quad \dot{\zeta}_i = g_i(x_i, \zeta_i, \{(x_j, \zeta_j)\}_{j \in \mathcal{N}_i}, \varepsilon).$$

Result: Given $\varepsilon > 0$, we design $\{(h_i, g_i)\}_{i=1}^N$ such that

$$\lim_{t\to+\infty}|x_i(t)-x_j(t)|\leq\varepsilon\qquad\forall i,j\in\{1,\ldots,N\},$$

$$\lim_{t\to+\infty}|x_i(t)|_{X_i}\leq\varepsilon\qquad\forall i\in\{1,\ldots,N\}.$$

At the same time, we guarantee that

$$|\gamma_i|_{\infty} < \infty, \ |\zeta_i|_{\infty} < 1, \ \inf_{t>0} \zeta_i(t) > 0 \qquad \forall i \in \{1,\ldots,N\}.$$

Adaptive Design

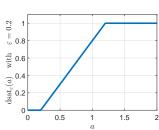
Inspired by [Chen, et al, IEEE TAC, 2024], we let

$$\dot{\gamma}_{i} = \sum_{j=1}^{N} a_{ij} (\gamma_{j} - \gamma_{i}) + \frac{1}{2} \mathsf{dsat}_{\varepsilon} \left(|x_{i}|_{X_{i}} \right) + \frac{1}{2} \mathsf{dsat}_{\varepsilon} \left(\sum_{j \in \mathcal{N}_{i}} |x_{j} - x_{i}| \right),$$

$$\dot{\zeta}_i = -\sum_{j=1}^N a_{ij} (\zeta_i^2/\zeta_j - \zeta_i) + \frac{\zeta_i}{2} \mathsf{dsat}_{\varepsilon} \left(|x_i| \chi_i \right) + \frac{\zeta_i}{2} \mathsf{dsat}_{\varepsilon} \left(\sum_{j \in \mathcal{N}_i} |x_j - x_i| \right),$$

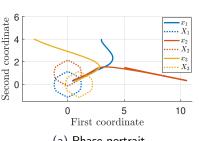
where the function $\mathsf{dsat}_\varepsilon:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0} \text{ is given by }$

$$\mathsf{dsat}_{arepsilon}(\mathsf{a}) := rac{1 + |\mathsf{a} - arepsilon| - |\mathsf{a} - arepsilon - 1|}{2}.$$

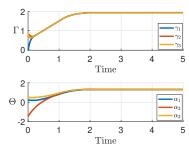


Some Simulations

Consider the distributed optimization problem with N=3 agents of dimension n=2.



(a) Phase portrait



(b) Evolution of γ_i s and α_i s

Perspectives

- Extend our framework to general perturbations, capturing false data, malicious nodes, and failures.
- Consider similar problems in discrete time.
- Consider sub-gradient, proximal, and high-order algorithms, as well as constrained problems.

Project Review

The project allowed us to

- 1. participate at the 2025 NOLCOS conference in Island.
- 2. partially support Olayo's internship at UC San Diego.
- 3. partially support Olayo's trip to CDC 2025 in Brazil.
- 4. buy a computer to a new PhD student.

Scientific production (To be presented at CDC 25)

- On the Perturbed Projection-Based Distributed Gradient-Descent Algorithm, with T. Bazizi and P. Frasca.
- A Necessary and Sufficient Condition for Forward Invariance in Constrained systems, with O. Reynaud and A. Hably.

Journal extensions are almost ready for submission.

