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Problems Formulation

The problem minx∈Rn

(
F (x) :=

∑N
i=1 fi (x)

)
can be recast to

minx1,...,xN∈Rn

∑N
i=1 fi (xi ) s.t. x1 = ... = xN .

In a distributed framework :
I Each fi : Rn → R is assigned to a

computation unit.
I Every unit seeks a minimum of fi

within the set of minimizers Xi .
I The exchange is key so that the

minimum is consensual.
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Challenge : Dynamically design every unite minimizer xi s.t.

lim
t→+∞

x1(t) = ... = lim
t→+∞

xN(t) ∈ {X1 ∩ ... ∩ XN}.
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Distributed/Federated Learning

Consider the optimization problem

min
θ1,...,θN∈Rn

N∑
i=1

`i (θi , (u
i
1, y

i
1), ..., (uimi

, y imi
)) s.t. θ1 = ... = θN .

Here, every unit i has access to the local data-set {(uik , y ik)}mi
k=1.

Hence, following a distributed-optimization framework, every unit i

I minimizes its local cost function `i using {(uik , y ik)}mi
k=1.

I shares only θi , the local estimate of a global solution, with
some other neighboring agents.

When the exchange happens through servers, we talk about
federated learning. Otherwise, it is distributed learning.
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Some Literature Review
Here is a candidate distributed-optimization algorithm :

ẋi = −∇fi (xi )︸ ︷︷ ︸
Optimality

+γi

N∑
j=1

aij(xj − xi )︸ ︷︷ ︸
consensus

, γi > 0, ∀i ∈ {1, 2, . . . ,N},

∇fi is the gradient of fi , and aij ≥ 0 represents the communication
weight between agent i and j .

- Usually the descent rate γi is a predefined time-varying signal [P.
Lin, et al, IEEE TAC, 2025] and [Nedic, et al, IEEE TAC, 2009].

- Alternative algorithms, when the γi s are constant, include :

I A PI control strategy : [Yang, et al, Automatica, 2018].

I Second-order algorithm : [Lu and Tang, IEEE TAC, 2012].
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Projection-Based Formulation
Assume that :
I Each local cost function fi has a convex

set Xi of minimizers.
I The intersection of Xi s is nonempty.

Hence, a solution to minx∈Rn

∑N
i=1 fi (x) must belong to ∩Ni=1Xi .

Then, the following equivalence holds

min
x1,...,xN∈Rn

N∑
i=1

fi (xi ) ≡ min
x1,...,xN∈Rn

1
2

N∑
i=1

|xi − ΠXi
(xi )|2,

subject to x1 = ... = xN subject to x1 = ... = xN .

ΠXi
(xi ) := argminy∈Xi

|xi − y | is the projection of xi on Xi .
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Projection-Based Gradient Algorithm

The new local cost functions are fi (·) := | · |2Xi
/2, verifying

∇|xi − ΠXi
(xi )|2 = 2(xi − ΠXi

(xi )).

Then, the gradient-descent algorithm

ẋi = −∇fi (xi ) + γi

N∑
j=1

aij(xj − xi ) i ∈ {1, 2, ...,N}

is reformulated as a projection-based gradient-descent algorithm

ẋi = −[xi − Π̃Xi
(xi )] + γi

N∑
j=1

aij(xj − xi ) i ∈ {1, 2, ...,N},

where Π̃Xi
(xi ) is a corrupted projection of xi onto Xi .
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Projection Computation

We model the corrupted projection as

Π̃Xi
(xi ) := ΠXi

(xi ) + ζipi ,

I The coefficient ζi ∈ (0, 1) represents a tunable precision.

I pi ∈ Rn stands for the worst-case projection error.

I The algorithm in [Usmanova, et al, ICML, 21] provides such a
projection Π̃Xi

(xi ) within O(log(1/ζi )) computation steps.

As a result, we recover the class of perturbed multi-agent systems

ẋi = γi

N∑
j=1

aij(xj − xi )− (xi − ΠXi
(xi )) + ζipi i ∈ {1, ...,N}.
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Handling Bounded Perturbations

ẋi = γi
∑N

j=1 aij(xj − xi )− (xi − ΠXi
(xi )) + ζipi , i ∈ {1, ...,N}.

I When pi ≡ 0 the problem is solved in [Shi, et al, IEEE TAC,
13].

I When pi 6≡ 0, the problem is solved using predefined signals
(γi , ζi ) while assuming vanishing pi [Lou, et al, IEEE TAC, 16].

Under unknown bounded perturbations, guaranteeing

lim
t→+∞

x1(t) = ... = lim
t→+∞

xN(t) ∈ X1 ∩ ... ∩ XN

is impossible. However, we can get arbitrarily close !
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Adaptive Framework

ẋi = γi
∑N

j=1 aij(xj − xi )− (xi − ΠXi
(xi )) + ζipi , i ∈ {1, ...,N}.

We design {(γi , ζi )}Ni=1 as

γ̇i = hi (xi , γi , {(xj , γj)}j∈Ni
, ε), ζ̇i = gi (xi , ζi , {(xj , ζj)}j∈Ni

, ε).

Result : Given ε > 0, we design {(hi , gi )}Ni=1 such that

lim
t→+∞

|xi (t)− xj(t)| ≤ ε ∀i , j ∈ {1, . . . ,N},

lim
t→+∞

|xi (t)|Xi
≤ ε ∀i ∈ {1, . . . ,N}.

At the same time, we guarantee that

|γi |∞ <∞, |ζi |∞ < 1, inf
t≥0

ζi (t) > 0 ∀i ∈ {1, . . . ,N}.
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Adaptive Design

Inspired by [Chen, et al, IEEE TAC, 2024], we let

γ̇i =
N∑
j=1

aij(γj − γi ) +
1
2
dsatε (|xi |Xi

) +
1
2
dsatε

∑
j∈Ni

|xj − xi |

 ,

ζ̇i = −
N∑
j=1

aij(ζ
2
i /ζj − ζi ) +

ζi
2
dsatε (|xi |Xi

) +
ζi
2
dsatε

∑
j∈Ni

|xj − xi |

 ,

where the function
dsatε : R≥0 → R≥0 is given by

dsatε(a) :=
1 + |a− ε| − |a− ε− 1|

2
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Some Simulations

Consider the distributed optimization problem with N = 3 agents of
dimension n = 2.
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(b) Evolution of γi s and αi s
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Perspectives

I Extend our framework to general perturbations, capturing false
data, malicious nodes, and failures.

I Consider similar problems in discrete time.

I Consider sub-gradient, proximal, and high-order algorithms, as
well as constrained problems.
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Project Review

The project allowed us to
1. participate at the 2025 NOLCOS conference in Island.
2. partially support Olayo’s internship at UC San Diego.
3. partially support Olayo’s trip to CDC 2025 in Brazil.
4. buy a computer to a new PhD student.

Scientific production (To be presented at CDC 25)

1. On the Perturbed Projection-Based Distributed
Gradient-Descent Algorithm, with T. Bazizi and P. Frasca.

2. A Necessary and Sufficient Condition for Forward Invariance in
Constrained systems, with O. Reynaud and A. Hably.

Journal extensions are almost ready for submission.
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