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Introduction

Let X and Y be two sets. Let f : X → Y. Let Y0 ⊂ Y. The feasible set
associated to Y0 is defined as : Γ∗ := {x ∈ X : f (x) ∈ Y0}.

Example :

f :
{

[0, 1]2 → R
x = (x , x ′) 7→ 2(1 − 2 exp(−x2) − 1.7 exp(−2(x ′ − 0.8)2))

Γ∗ := {x ∈ X : f (x) ≤ −3.2}

How to estimate Γ∗ from model evaluations (x1, f (x1)), . . . , (xn, f (xn)) ?
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Naive approaches

1. regular grid

Drawbacks :
▶ curse of dimensionality (here grid of size 1001 × 1001 in dimension 2) ;
▶ arbitrariness of choosing the grid (e.g., placement).

2. random grid (e.g., uniform sampling, LHS, known priors)
Advantage : it works in higher dimensions.
Drawback : sampling density is not informed by the model.
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Motivation 1 : pre-calibration of a wind turbine simulator

Goal
▶ Pre-calibrate a wind turbine simulator

▶ Compare simulated modes and frequencies with
experimental data (Cadoret [2023])

The black box model
▶ Inputs : 2 stiffness coefficients (Θ)
▶ Outputs : 13 frequencies and vibration modes (λi (Θ), Modi (Θ))
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Motivation 2 : an automotive NOx depollution system

European emission standards :
{

NOout
x ≤ 80 mg .km−1

NHout
3 ≤ 30 ppm
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Gaussian Process Emulator
In our setting, f : X → Rp is a continuous black-box model costly to evaluate
and X is a compact subset of Rd .

A solution is to emulate f so that we can compute approximated evaluations of
f at low cost.

Gaussian prior
We assume that the deterministic black-box model f is a realization of a
Gaussian random field (Zx )x∈X with prior mean m and covariance kernel k.
Define Γ := {x ∈ X : Zx ∈ Y0}.

Posterior distribution
For model evaluations on a design Xn := {x1, . . . , xn} ∈ X n, denoted by
fn := {f1, . . . , fn} ∈ Yn, the posterior field, Z | (Z(Xn) = fn), is still a Gaussian
process with mean and covariance kernel{ mn(x) = m(x) + k(x , Xn)k(Xn, Xn)−1(fn − m(Xn)),

kn(x , y) = k(x , y) − k(x , Xn)k(Xn, Xn)−1k(Xn, y), σ2
n(x) = k(x , x).
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Bayesian Active Learning

Bayesian feasible set estimation
We estimate Γ∗ = {x ∈ X : f (x) ∈ Y0} by Γ̂n = {x ∈ X : mn(x) ∈ Y0}.

Sequential design of experiments
Sequentially evaluate f at points that minimize a specific acquisition criterion.

Stepwise Uncertainty Reduction
At each step, given a current design Xn, find a new evaluation point xn+1 that
optimally reduces the expected uncertainty on the future estimate, i.e.,

xn+1 ∈ argminx∈XE
[
Huncert

n+1 (x)
]

,

with Huncert
n+1 (x) a so-called uncertainty measure (to be defined).
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Scalar output

Bichon criterion [Bichon et al., 2008]
Goal-oriented criterion for the DoE enrichment. It is an adaptation of EI [Jones
et al., 1998], introduced in the context of global optimization, to the inversion
framework.

Feasibility Function

FF(x) : =
(
ε(x) − |c − Zx |

)+

=
{

ε(x) − |c − Zx | if Zx ∈
[
c − ε(x), c + ε(x)

]
0 otherwise

Enrichment criterion
x (n+1) ∈ argmax

x∈X
EFFn(x) with EFFn(x) := E

[
FFn(x) | (Z(Xn) = fn)

]
where FFn(x) := FF(x) with ε(x) := κσn(x) and κ > 0.
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Scalar output

Feasibility function

Among admissible points, add the most likely one.
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Scalar output

SUR Bichon [Duhamel et al., 2023]

Uncertainty measure
For µ a finite measure on X we define

Hbichon
n =

∫
X EFFn(z)dµ(z)

=
∫

X E
[
FFn(z) | (Z(Xn) = fn)

]
dµ(z)

and
Hbichon

n+1 (x) =
∫

X
E

[
FFn+1(z) | (Z(Xn) = fn) , Zx

]
dµ(z).

Adaptive learning

xn+1 ∈ argminx∈XE
[
Hbichon

n+1 (x)
]

= argminx∈X
∫

X E
[
FFn+1(z) | (Z(Xn) = fn)

]
dµ(z).

more on computation
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Scalar output

Numerical experiments

Model
Branin-Hoo (2D) function on [0, 1]2 [Picheny et al., 2013].

Feasible set
Γ∗ := {x ∈ X , f (x) ≤ c} with c = 10 so that the volume of Γ∗ represents
15.74% of the total volume of X .

Initial design
Tests are performed on 100 different initial DoEs of size 10 Maximin LHSs.

Active learning
20 iterations (1 simulation per iteration) are run. Branin function is emulated
by GRF with Matérn 5/2 covariance function and constant mean.

Set estimator
In the following, we evaluate two estimators of Γ∗ :

Γ̂n(Xn) := {x ∈ X : mn(x) ∈ Y0},
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Scalar output

Numerical experiments

SUR Bichon (κ = 1)
Err

(
Γ̂n(Xn)

)

15/36



On feasible set estimation with Bayesian active learning
Bayesian Active Learning

Vector output

Multioutput extension [Duhamel et al., 2025]

Model
f = (f1, . . . , fp)T : X compact subset of Rd → Y ⊂ Rp

Feasible set
Γ⋆

i := {x ∈ X , fi (x) ≤ ci } , for all 1 ≤ i ≤ p

Γ⋆ := {x ∈ X , ∀ 1 ≤ i ≤ p, fi (x) ≤ ci } = ∩p
i=1 Γ⋆

i )

Isotopic data
at each evaluation point x ∈ X , simultaneous evaluation of the p output
components

Remark
For the estimation of Γ∗, vector extensions of Integrated Bernoulli Variance and
Expected Measure Variance SUR criteria are proposed in [Fossum et al., 2021 ;
Stange and Ginsbourger, 2024].

16/36



On feasible set estimation with Bayesian active learning
Bayesian Active Learning

Vector output

Example with d = 2 and p = 2

Γ⋆
1 := {x ∈ [0, 1]2, f1(x) ≤ c1} Γ⋆

2 := {x ∈ [0, 1]2, f2(x) ≤ c2} Γ⋆ = Γ∗
1 ∩ Γ∗

2

From now on, criteria are presented for p = 2 but can be generalized, at least
theoretically, to any p > 2.
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Vector output

Alternating Bichon criterion

xn+1 ∈

 argmax
x∈X

EFF1,n(x) if n + 1 is even

argmax
x∈X

EFF2,n(x) otherwise.

Pareto Bichon criterion

xn+1 ∈ argmin
x∈X

{√
(EFF1,n(x) − I1)2 + (EFF2,n(x) − I2)2

}
.

with (I1, I2) :=
(
max
x∈X

EFF1,n(x), max
x∈X

EFF2,n(x)
)

the ideal point obtained
through two single-objective optimizations.
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Vector output

Vector output emulator
g is a realization of a vector Gaussian random field Z := (Z1, . . . , Zp)⊤,

Notation

Kn(x , x ′) :=
(

Cov
(
Zi (x), Zj(x ′) | (Z(Xn) = fn)

)
, (i , j) ∈ {1, . . . p}2

)
Σn(x) := Kn(x , x) and

Mn(x) =
(
Mn,1(x), . . . , Mn,p(x)

)⊤ := E
(
Zx | (Z(Xn) = fn)

)
.

kernel choice

Output extension of Bichon criterion

xn+1 ∈ argmax
x∈X

VEFFn(x)

with VEFFn(x) := det
(
Σn(x)

) 1
2p E

[ (
κ − mini

(
|ci −Zi,x |
σn,i (x)

))+
| (Z(Xn) = fn)

]
and σn,i (x) :=

√
(Σn(x))i,i . more on computation
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Vector output

Numerical experiments
Performance criteria
For i = 1, 2,

Erri := µ(Γ̂i ∆Γ⋆
i )

µ(Γ⋆
i ) with Γ̂i :=

{
x ∈ X , Mn,i (x) ≤ ci

}
·

We also compute :
Errsum := Err1 + Err2·

Model, d = 2 and p = 2
2D-Branin function

g1(x) :=
(

x̄2 − 5x̄2
1

4π2 + 5x̄1

π
− 6

)2
+ 10

(
1 − 1

8π

)
cos(x̄1) + 10

and a slightly modified version of it

g2(x) :=
(

x̄2 − 3x̄2
1

4π2 + 4x̄1

π
− 6

)2
+ 10

(
1 − 1

8π

)
cos(x̄1) + 2x̄1 − 9x̄2 + 32

with x̄1 := 15x1 − 5 and x̄2 := 15x2.
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Vector output

Feasible sets for c1 = c2 = 10, κ = 1. Errors are plotted as average on 40 initial
Maximin LHSs of size 5 and with 30 enrichment iterations.
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Vector output

Taking computational cost into account

DPi (t, K) := 100 ×
#
{

j∈{1,...,NRepet},∀ t̃≥t, Err(j)
i (t̃)<K

}
NRepet

,

DPtot(t, K) := 100 ×
#
{

j∈{1,...,NRepet},∀ i,∀ t̃≥t, Err(j)
i (t̃)<K

}
NRepet

,

with NRepet the number of repetitions.

We choose c = (10, 10). Data profiles are plotted with K = 10% for evaluation
times equal to 3h (top line), 10min (middle line) and 1min (bottom line),
respectively, and with NRepet = 40 initial Maximin LHSs of size 5 on 30
iterations.
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Vector output
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Vector output

Example for which alternating Bichon criterion fails : c1 = 10, c2 = 104

(a) Err1 (b) Err2 (c) Errsum
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Vector output

Motivation 1 : pre-calibration of a wind turbine simulator

Goal
▶ Pre-calibrate a wind turbine simulator

▶ Compare simulated modes and frequencies with
experimental data (Cadoret [2023])

The black box model
▶ Inputs : 2 stiffness coefficients (Θ)
▶ Outputs : 13 frequencies and vibration modes (λi (Θ), Modi (Θ))
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Vector output

Define
Γ⋆

i :=
{

Θ ∈ X, gi (Θ) ≤ Ti

}
, for i ∈ {1, 2}

with
▶ X := [0.8, 1.2] × [0.6, 1.4] : design space, and Ti : thresholds,

▶ gi (Θ) := ln
( Measi (Θ)

1−Measi (Θ)

)
and Measi (Θ) :=

(
1 −

|<Mod⋆
i ,Modi (Θ)>|2

∥Mod⋆
i ∥2∥Modi (Θ)∥2

)
.

(a) g1(Θ) (b) g2(Θ)
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Vector output

(a) Alternating Scal (b) Pareto Scal (c) Vect

Enrichment after 30 iterations from an initial LHS Maximin DoE (size 5) for different criteria, in
the pre-calibration with two main modes with T = (7.148, 7.296). Partial excursion set boundaries
from a 30 × 30 grid are overlaid.
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Motivation 2 : an automotive NOx depollution system

European emission standards :
{

NOout
x ≤ 80 mg .km−1

NHout
3 ≤ 30 ppm

29/36



On feasible set estimation with Bayesian active learning
Feasible set estimation under uncertainties

With the most recent rules, robust procedures for the emission testing of
vehicles in real driving are required.

Mathematical formulation (1/2)

g : X × V → R
(x , v) 7→ g(x , v)

where X ⊂ Rd is compact and V a functional space.
Probabilistic description of uncertainty : V is a random variable valued in V.
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Mathematical formulation (2/2)

For a fixed t ∈ R, define
Γ∗

a.s. := {x ∈ X s.t. g(x, V) ≤ c almost surely},

Γ∗
α := {x ∈ X s.t. P(g(x , V) ≤ c) ≥ 1 − α},

Γ∗ := {x ∈ X s.t. f (x) = E[g(x , V)] ≤ c} = g−1(Y0), where Y0 = (−∞, c].

Objective :
estimate Γ∗ ⊂ Rd from model evaluations.

Note that the estimation of Γ∗
α is related to Quantile Set Inversion (see, e.g.,

[Ait Abdelmalek-Lomenech et al.]).

Issues :
▶ each evaluation f (x) requires the estimation of E[g(x , V)],
▶ V is known through a set of κ realizations Ξ = {v1, . . . vκ},
▶ each evaluation g(x , v) is costful.
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We proposed two different strategies to solve the problem.

Strategy I [El Amri et al., 2020]
▶ build a metamodel for f and

choose xn+1 ∈ X ,
▶ estimate f (xn+1) = E[g(xn+1, V)]

with ℓ evaluations of g(xn+1, ·)
selected by quantization.

Strategy II [El Amri et al., 2023]
▶ build a metamodel for g ,
▶ choose (xn+1, vn+1) ∈ X × Ξ, evaluate g at

this new point.
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IFPEN test case : control strategy for an automotive NOx depollution system

▶ NHout
3 ≤ 30 ppm,

▶ 2 control parameters in
X = [0, 0.6] × [0, 0.6],

▶ V represented by 100 driving
cycles on [0, 5400s],

▶ Strategy I : initial DoE 8 points in
X ⊂ R2 (a mean of 23 calls to g
at each point)

▶ Strategy II : initial DoE 5*22 in
X ⊂ R2+20 (20 eigenfunctions for
80% explained variance)
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IFPEN test case : control strategy for an automotive NOx depollution system

▶ NHout
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at each point)
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n = 510 calls to g
Strategy I versus Strategy II

Reference excursion set : n = 1575
calls to g with Strategy I
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Conclusion
▶ Bayesian Active Learning is a powerfull tool for feasible set estimation.
▶ We were able to handle :

▶ vector output models,
▶ estimation under uncertainties.

Perspectives
▶ to prove convergence results for a regularized version of SUR Bichon

criterion,
▶ to consider more general covariance structures for MOGP,
▶ to develop efficient implementation for more than two outputs,
▶ to extend Bichon criterion for estimation under uncertainties,
▶ to estimate feasible sets with very small relative volume (rare event), . . .

MIAI Chair (just accepted)
BALTEEC : Bayesian Active Learning Techniques for Energy EfficienCy in
buildings

Thanks for your attention !
36/36



Some references I

Ait Abdelmalek-Lomenech, R., Bect, J., Chabridon, V., and Vazquez, E. (2024).
Bayesian sequential design of computer experiments for quantile set inversion.
Technometrics, pages 1–10.

Bichon, B. J., Eldred, M. S., Swiler, L. P., Mahadevan, S., and McFarland, J. M. (2008).
Efficient global reliability analysis for nonlinear implicit performance functions.
AIAA journal, 46(10) :2459–2468.

Chevalier, C. (2013).
Fast uncertainty reduction strategies relying on Gaussian process models.
PhD thesis.

Chevalier, C., Ginsbourger, D., Bect, J., and Molchanov, I. (2013).
Estimating and quantifying uncertainties on level sets using the vorob’ev expectation and deviation with
gaussian process models.
In mODa 10–Advances in Model-Oriented Design and Analysis : Proceedings of the 10th International
Workshop in Model-Oriented Design and Analysis Held in  Lagów Lubuski, Poland, June 10–14, 2013, pages
35–43. Springer.

Duhamel, C., Helbert, C., Munoz Zuniga, M., Prieur, C., and Sinoquet, D. (2023).
A sur version of the bichon criterion for excursion set estimation.
Statistics and Computing, 33(2) :41.



Some references II

Duhamel, C., H. C. M. Z. M. P. C. and Sinoquet, D. (2025).
Active learning strategies for the estimation of a feasible set dened from a vector output black-box
simulator.
https: // hal. science/ hal-04970769 .

El Amri, M. R., Helbert, C., Lepreux, O., Zuniga, M. M., Prieur, C., and Sinoquet, D. (2020).
Data-driven stochastic inversion via functional quantization.
Statistics and Computing, 30(3) :525–541.

El Amri, M. R., Helbert, C., Zuniga, M. M., Prieur, C., and Sinoquet, D. (2023).
Feasible set estimation under functional uncertainty by gaussian process modelling.
Physica D : Nonlinear Phenomena, 455 :133893.

Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D., and Rajan, K. (2021).
Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling.
The annals of applied statistics, 15(2) :597–618.

Goovaerts, P. (1997).
Geostatistics for natural resources evaluation.
Oxford University Press, USA.

Janusevskis, J. and Le Riche, R. (2013).
Simultaneous kriging-based estimation and optimization of mean response.
Journal of Global Optimization, 55(2) :313–336.

https://hal.science/hal-04970769


Some references III

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient global optimization of expensive black-box functions.
Journal of Global optimization, 13(4) :455–492.

Molchanov, I. S. (2005).
Theory of random sets, volume 87.
Springer.

Paciorek, C. J. (2003).
Nonstationary Gaussian processes for regression and spatial modelling.
PhD thesis, Carnegie Mellon University.

Pelamatti, J., Le Riche, R., Helbert, C., and Blanchet-Scalliet, C. (2024).
Coupling and selecting constraints in bayesian optimization under uncertainties.
Optimization and Engineering, 25(1) :373–412.

Picheny, V., Wagner, T., and Ginsbourger, D. (2013).
A benchmark of kriging-based infill criteria for noisy optimization.
Structural and Multidisciplinary Optimization, 48(3) :607–626.

Stange, P. and Ginsbourger, D. (2024).
Consistency of some sequential experimental design strategies for excursion set estimation based on
vector-valued gaussian processes.
Electronic Journal of Statistics, 18(2) :5091–5131.



Computation

E
[(

κσn+1(z) − |c − Zz |
)+ | (Z(Xn) = fn)

]
= (mn(z) − c)

[
2 ϕ

(
c − mn(z)

σn(z)

)
− ϕ

(
c− − mn(z)

σn(z)

)
− ϕ

(
c+ − mn(z)

σn(z)

)]

− σn(z)

[
2 φ

(
c − mn(z)

σn(z)

)
− φ

(
c− − mn(z)

σn(z)

)
− φ

(
c+ − mn(z)

σn(z)

)]

+ κσn+1(z)

[
ϕ

(
c+ − mn(z)

σn(z)

)
− ϕ

(
c− − mn(z)

σn(z)

)]
where c± := c ± κσn+1(z), φ and ϕ denote the probability density and
cumulative distribution function of the standard normal distribution,
respectively.

Then, the integral in the active learning criterion is computed with
n.points = 104. go back



Let Vx,n := min1≤i≤p

(
|ci −Zi,x |
σn,i (x)

)
| (Z(Xn) = fn).

Explicit formulation go back

VEFF(x) = det
(
Σn(x)

) 1
2p

∫ κ

0
FVx,n (t) dt.,

with FVx,n the cumulative distribution function of Vx,n.

Explicitation for p = 2

FVx,n (t) = ϕ(t + α1,n) − ϕ(−t + α1,n) + ϕ(t + α2,n) − ϕ(−t + α2,n)

−P
(
(U1, U2) ∈ [α1 − t, α1 + t] × [α2 − t, α2 + t]

)
,

where αi,n := ci −Mn,i (x)
σn,i (x) , ϕ c.d.f. of N (0, 1) and

( U1
U2

)
∼ N

((
0
0

)
,

(
1 ρn
ρn 1

))
with ρn the correlation coefficient between Z1,x and Z2,x cond. on Z(Xn) = fn.



Kernel choice go back

We choose an ICM-type separable kernel [Goovaerts et al., 1997] :(
K(x , x ′)i,j

)
1≤i,j≤p

:= k(x , x ′) B,

with k a scalar kernel on X 2 and B a p × p symmetric positive-definite matrix.

For p = 2 we consider, as in [Pelamatti et al., 2024] ,

B = σ2
kOut

(
1 cos(θkOut)

cos(θkOut) 1

)
with σkOut ∈ R a scaling factor common to all components (homoscedasticity),
and θkOut ∈ [0, π] the parameter controlling output correlations under spherical
parameterization. We choose k as :

k(x , x ′) := σ2
common

d∏
j=1

RMatérn 5/2
(
|xj − x ′

j |, θj
)
, ∀ (x , x ′) ∈ X 2

with σ2
common = 1. Hyperparameters are estimated by maximum likelihood.
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